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Goal and Technical Objectives
• context: NASA missions/testbeds generate massive volumes 

of engineering time-series data but largely fail to exploit them
– typically: millions of time points per week, thousands of sensors
– largely checked in real-time and then ignored in future operations
– ability to find similar historic data to current state (query) would:

• help understand scientific or engineering phenomena (I.e. better designs)
– e.g. find “thermal snap” events in SIM structures similar to one of interest

• reduce cost of ops
– e.g. find similarities (and associated corrective action logs) in previous Space 

Shuttle mission to currently detected abnormality

– improve analysis/safety

– provide robust basis for detecting abnormalities or known dangerous events

• our goal: develop a fast search engine for time-series data 
relevant to given queries, suitable for real-time and off-line 
mission contexts (e.g. “Google for time-series data”).



Technical Problem Statement

• technical problem: find task-useful notion of “similarity” and fast 
way to apply it (i.e. avoid touching entire database)

• many technical challenges, including:
– suitable “similarity” score is often domain & query dependent
– traditional indexing methods quickly degrade to “linear scan” once 

dimensionality grows beyond 10.
– thus, most other related research on “similarity search” assume similarity 

score function is given and focus on pre-query dimensionality reduction 
(e.g. PCA or FastMap), to enable fast off-line nearest-neighbor indexing 
methods (e.g. kd-trees, vp-trees, etc.).

– however, time-series often impractical to reduce to ~10 predefined dims
• multi-variant (many sensors), rich feature space (e.g. lags, frequency-

domain), rich invariance space (e.g. scaling, shifting, time-warping, …)



Technical Approach

• our solution extends/combines multiple key ideas:
– employ rich full set of possible time-series features

• time lags, windowed stats (e.g. mean, max high-water marks), etc.
• efficient lazy generation: only compute specific features from large 

candidate space as required during model training / selection search

• dimensionality reduction innovations
• support nonlinear reduction via kernelized FastMap & locally-linear 

embedding  (e.g. [DeCoste, ICONIPS-2001])
• new approximate nearest-neighbor (NN) similarity methods that 

exploit these nonlinear embeddings and reason about induced errors

• but, most importantly and uniquely, focuses on query-relevance, via 
learning/exploiting query models …



Technical Approach: Query Models
• discriminative query models

– learn robust support vector machine (SVM) classifier models
• distinguishes query from rest/most of (subsampled) historic database
• exploits invariance: “positive examples” include not only original 

query but also many shifted, scaled, time-warped versions of query

• finds natural, query-relevant notions of similarity
– focuses on ways query is unique from most historic data

– also indicates feature weighting which would improve Euclidian distance-
based similarity scores (for use in approx-NN indexing methods)

– generative / probabilistic query models

– learn state-transition models (e.g. HMM) of query behavior

– facilitates handling missing or noisy sensor data

• hybrid approach: combine strengths of each
– e.g. include match results from both; suggest features & 

variances to consider in other model types as well, …



Data and NASA Relevance
• we initially focus on two large time-series data sets:

– IPEX-II space interferometer (SIM) boom structure 
• data obtained from: Dr. Marie Levine, JPL (Shuttle STS-85 payload)
• initial set: 5 minutes of 1KHz for 24 accelerometer sensors (200,000 

time points); total set: 10 Gbytes
• relevance: IPEX thermal snap events represents case of rare 

phenomena to be harvested and understood from large data sets

– Space Shuttle mission data
• data obtained from: JSC (MEWS Shuttle data system)
• currently working with hundreds of sensors from 3 recent missions

– temperature and electrical sensors for STS 105,106, and 108

• relevance: prime example of large-scale time-series NASA data set, 
with earlier-mission data similar to most latest-mission data
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Accomplishments & Preliminary 
Findings

• key technical innovations to date:
– efficient methods for training invariant-query SVMs models

• enables many invariances and historic subsamples at query-time

– radical speed-up (10-100x) of SVM classification times
• enables complex query models that best discriminate between large 

numbers of query variants versus massive historic databases.

– developed efficient methods for lazy generation of example 
vectors, from large space of rich time-series features

• enables efficient batch and online training over large data sets, 
regardless of available computer RAM

• enables feature selection over vast candidate spaces (for improved 
accuracy of query models and relevance of query matches)



Accomplishments & Preliminary 
Findings (cont)

• Also, several advances on generative query models:

– prior work (Ge and Smyth, ACM SIGKDD 2000):

• probabilistic time-series query matching using probabilistic models



Accomplishments & Preliminary 
Findings (cont)

• example of benefit of generative query model vs
traditional template matching

Detection Results with Markov Method
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Technical Significance of Progress / 
Expected Impact on NASA

• our discriminative and generative query models provide query-
relevant notions of similarity that capture user intention and task 
relevance much better than traditional pre-query measures of 
similarity.

• our SVM innovations, e.g.  [Decoste, ICML-2002] giving orders 
of magnitude speedup of classification, are likely to have wide-
spread impact on both the machine learning field and NASA.

• impact 1: makes SVMs competitive/superior speed-wise with 
popular alternatives (e.g. neural networks) for which SVMs
have already been demonstrated to often be superior otherwise 
(accuracy, robustness). 

• impact 2: makes SVMs practical in new applications (e.g. real-
time classification onboard resource-constrained spacecraft 
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